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Thermodynamics arguments have been employed to derive how the energy 
density p depends on the temperature T for a fluid whose pressure p obeys the 
equation of state p = (7 - 1)p, where y is a constant. Three different methods, 
among them the one considered by Boltzmann (Carnot cycle), lead to the 
expression p =~/TT/(?- 1), where r/ is a constant. This resuK also appears 
naturally in the framework of general relativity for spacetimes with constant 
spatial curvature. Some particular cases are vacuum (p = -p) ,  cosmic strings 
(p = -�89 radiation (p = �89 and stiff matter (p = p). It is also shown that 
such results can be adapted for blackbody radiation in N spatial dimensions. 

1. I N T R O D U C T I O N  

The S t e f a n - B o l t z m a n n  law has  recent ly  been discussed in the contex t  
o f  b lack-hole  t h e r m o d y n a m i c s  ( L a v e n d a  and  Dunning-Davies ,  1990). As  is 
well k n o w n  f rom b lack-hole  the rmodynamics ,  the energy densi ty  is in- 
versely p r o p o r t i o n a l  to the tempera ture .  I t  was then assumed tha t  such 

1 systems behave  like a perfect  fluid wi th  negat ive  pressure  p = - ~ p ,  where  
p is the energy density.  Indeed,  t h e r m o d y n a m i c  states with negat ive pres- 
sure are  metas tab le ,  bu t  they are no t  fo rb idden  by  general  re la t ivi ty  no r  by  
any  o ther  law of  nature .  These states are  usual ly  connec ted  with phase  
t rans i t ions  in the same fashion  as occur  for  an  overhea ted  van  der  W a a l s  
l iquid,  a l though  its overal l  existence has  been es tabl ished by  different  
theore t ica l  a rguments  ( L a n d a u  and  Lifschitz,  1985; Sakharov ,  1982; 
Danielewicz,  1979; Lucfics and  Mart inf is ,  1984; L ima  et al., 1988). F o r  
instance,  as shown by Gl ine r  (1966) and  Ze ldovich  (1968), Loren tz  invari-  
ance o f  the vacuum state in q u a n t u m  field theories requires  an  energy-  
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momentum tensor (EMT) of the form T~ = p • diag(1, 1, 1, I), making 
clear that the vacuum state can be envisaged as a particular relativistic 
perfect simple fluid whose equation of state is p = - p .  Another ex- 
ample frequently considered in the literature is provided by cosmic 
strings (for review see Vilenkin, 1985). A randomly oriented distribution 
of infinitely thin strings, averaged over all directions, has an EMT of 
the form (Vilenkin, 1981) T~ = p  x diag(1, 1/3, 1/3, 1/3), so that such a 
system can effectively be described as a relativistic perfect fluid with 
p = -�89 

In cosmology it is quite usual to describe the cosmic fluid for arbitrary 
stages of the universe by a "gamma-law" equation of state 

P = (7 - 1)p (1) 

where the "adiabatic index" 7 lies in the interval [0, 2]. It turns out that this 
generalized equation of state accounts for a one-parametric family of 
thermodynamic systems, including those with negative pressure. In particu- 
lar, the case ? = 0  is the vacuum state (Gliner, 1966; Zeldovich, 1968), 
whereas 7 = 2 accounts for the Zeldovich stiff matter (Zeldovich, 1962). 
These limit cases can also be established from causality requirements, since 
the speed of sound is v = c](Sp/Op)~, l, where c is the speed of light and a is 
the specific entropy per particle. Despite such interpretations, this one- 
parameter family of media may alternatively be viewed as the simplest 
generalization of the radiation fluid (7 4 = ~,p = lp), thereby leading to the 
question about a generalized Stefan-Boltzmann law, which would be 
satisfied by each one of its members. In this paper we are mainly interested 
in these kind of 7-fluids and, using only thermodynamic considerations, we 
will show by four correlated, but somewhat different approaches that 
p(T) = tiT ~/(~'- 1), where ~/ is a ?-dependent constant. To this end we will 
repeat the same arguments historically applied to the case of blackbody 
radiation. 

2. STEFAN-BOLTZMANN TYPE LAW FOR "/-FLUIDS 

The theoretical deduction of what is nowadays known as the Stefan- 
Boltzmann law was given by Boltzmann in 1884. His approach was based 
on nothing more than an application of the Carnot cycle for which thermal 
radiation played the role of working substance. A more pedagogical 
account may be found in Richtmyer (1934). In order to generalize properly 
Boltzmann's result, we will replace the thermal radiation by a 7-fluid 
obeying equation (1). As is well known, the Carnot cycle consists of two 
isothermal alternated with two adiabatic reversible processes. During the 
isothermal process at the higher temperature TH a certain quantity of heat 
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Fig. 1. The Carnot cycle for a y-fluid. 
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QH is adsorbed by the fluid, while a quantity Qc of heat is released along 
the lower isotherm T c. The efficiency E of the machine is defined as 

e = ]W] (2) 
IQ.I 

where I W] is the net work performed by the cycle. The energy density Pn 
of  the Y-fluid must remain constant in the course of  the expansion from 
volume v~ to the volume v2, i.e., along the T H isotherm. In order to 
counterbalance the expansion, as well as to compensate the work done by 
the 7-fluid itself, a quantity of  heat 

QH = 7p.(v2 -- v,) (3) 

must be supplied to the system. In the p x v diagram this process is 
represented by the horizontal line T n (see Fig. 1). Next the y-fluid 
undergoes an adiabatic expansion accompanied by a decrease in its energy 
density until reaching the value Pc corresponding to the lower temperature 
T c. By considering that such a process connects two infinitesimally close 
isotherms, i.e., d T  = TH -- T c ,  it follows from equation (1) that the pres- 
sure changed by dp = (7 - 1) dp, where dp = PH - Pc .  In order to compute 
the work done in the infinitesimal cycle, the system is now subjected to an 
isothermal compression at T c followed by an adiabatic reduction of its 
volume, returning to the initial value v I . The net work performed during 
the cycle is given by the area of  the parallelogram of Fig. 1 which, for small 
changes in pressure, may be approximated by ( v 2 -  v~)dp.  So, from the 
above results one can write 

d W  = (7 - 1)(v2 - v~) dp (4) 
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whereas, due to equation (3), the efficiency �9 given by (2) takes the form 

(y - 1) dp 
�9 - - -  ( 5 )  

7 P 

where the subscripts have been dropped. Now, recalling that �9 can be 
computed from �9 = (T u - T c ) / T  H and considering that the cycle is infi- 
nitesimal, it follows that �9 = dT/T and (5) can be rewritten as 

dp y dT 
- - -  ( 6 )  

p 7 - - 1 T  

Therefore, for 7 # 1, a straightforward integration yields 

p = tlT~/(~- l) (7) 

where I/is a y-dependent constant. This generalized Stefan-Boltzmann law 
encompasses all the possibilities discussed earlier. In particular, in the case 
of black holes it is enough to take y = 1/2. 

The above result can be more easily deduced using the thermodynamic 
second law 

T dS = dU + dW (8) 

In this case one can imagine a cylinder with ideally reflecting walls inside 
which there is a 7-fluid at a temperature T. The volume V can be reversibly 
changed by moving a piston. From the "y-law" equation of state, the work 
dW done by the system during the infinitesimal variation dV is 
dW = (7 - 1)p dV. Hence, by considering that U = p(T)V, one obtains 
from (8) 

dS = V (dp "] dT + 7P dV 
\dT]  -T (9) 

and, since dS is an exact differential, it follows from (9) that 

dp 7 dT 
P 7 - 1  T (10) 

which, after a straightforward integration, yields again equation (7). 
Perhaps the more direct proof of the generalized Stefan-Boltzmann 

law is obtained from Gibbs-Duhem reiation in the entropic representa- 
tion. For a one-component thermodynamic system it is given by (Callen, 
1985) 

U d ( 1 ) +  V d ( T  ) -  N d ( T ) = 0  (11) 
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where/~ is the chemical potential and N is the number of particles. As in 
the case of radiation (7 = 4/3), we assume that any y-fluid has # = 0, so 
that the above relation takes the form 

dp dT  
p +p T (12) 

and from equation (1) one has again 

ap y aT 
- - -  ( 1 3 )  

p y - I T  

It should be remarked that, unlike the earlier deductions, in the above 
method it was not necessary to make the assumption p = p(T), a fact 
already noticed in Lavenda and Dunning-Davies (1990). 

Now, for the sake of completeness, we will show how the generalized 
Stefan-Boltzmann law can be inferred using the Einstein field equations 
(EFE) applied to the cosmological domain. The line element of a homoge- 
neous and isotropic self-gravitating fluid in general relativity is (Weinberg, 
1972) 

( dr2_ t~r 2 ) ds 2 = c 2 dt 2 - R2(t)\ 1 + r 2 dO 2 + r z sin 2 0 d~b 2 (14) 

where ~: = 0, + 1 is the curvature parameter and R(t) is the scale function. 
For a perfect fluid the energy conservation law in such a background takes 
the form 

k 
+3(p  + p ) ~  = 0  (15) 

where a dot means time derivative. Now, using the "y-law" equation of 
state, the above equation is immediately integrated as 

/RoV 7 
P=Po~- -~ )  (16) 

where Po and Ro are constants. On the other hand, in the same conditions, 
the temperature evolution equation reads (Weinberg, 1971; Calvfio et al., 
1992) 

-'IVL  (17) 

and from equation (1) one obtains 

T =  To (R~ ~ 30- ' '  (18) 
\ R /  



132 De Lima and Santos 

Therefore, combining equations (16) and (18), it follows that 

p = tl T :/(~' - 1) (19) 

in accordance with our previous results. It should be noticed that the latter 
deduction is not independent of the second one insofar as equation (17) has 
been established using the fact that do- is an exact differential (o- is the 
specific entropy). Although the approach presented here is not new, equa- 
tion (19) is apparently not well known. In particular, this explains why the 
generalized Stefan-Boltzmann law was not inferred from cosmology. In 
general only the case of radiation (y = 4/3) is used to describe the early 
stages of the universe. 

It is also interesting to examine how the temperature of a y-fluid 
depends on the volume during an adiabatic expansion. Indeed, such 
relation was earlier derived in Lima and Maia (n.d.), but now it can be 
more easily obtained using the generalized Stefan-Boltzmann law. In  fact, 
by replacing (7) into (9) and using that dS = 0, we arrive at 

1 d T  d V  
y - 1  T + - - ~ = 0  (20) 

and therefore 

T1/(~-1) V = const (21) 

The remarkable difference in the thermal behavior presented by the two 
subclasses of 7-fluids, which are naturally separated by the singular case 
y = 1, will appear most clearly upon comparing the expressions (19) and 
(21). According to equation (21), for 7 > 1, the y-fluid cools in the course 
of the expansion and from (19), its energy density will diminish proportion- 
ally to a positive power of the temperature. However, if 7 < 1, the 
temperature grows, whereas the energy density now scales with a negative 
power of the temperature, thereby decreasing again for a decreasing of p if 
y ~ 0. For instance, in the case of cosmic strings (y = 2 / 3 , p  = -�89 one 
has Toc V -~/3 and p oc T -2. The limit case ~ = 0  is the vacuum state 
(p = - p ) ,  for which p remains constant and T oc V. 

TO emphasize the interest and generality of our results some points 
deserve comment. First, we remark that if one tries to apply the second law 
for each monochromatic component of the generalized radiation in the 
form 

TdSv  = d(p, V) +Pv d V  (22) 

the related Euler expression 

1 
& =~(p~  + p J V  (23) 
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will be valid only if p~(T) and pv(T) satisfy the "Gibbs-Duhem" 
equation 

whose integral is 

foT  p~,(T) = T d T  (25) 

In fact, by integrating the above expression over all frequencies, the 
"7-law" equation of state is recovered. This generalizes the standard result 
for blackbody radiation (Lavenda and Dunning-Davies, 1990). Second, in 
higher-dimensional theories, such as those of Kaluza-Klein type (Ap- 
pelquist et at., 1987), the equation of state of the radiation in N spatial 
dimensions is taken to be p = p/N: In this case, it is easy to see that the 
generalized Stefan-Boltzmann law given by (7) and the corresponding 
deductions presented here can be adapted up to some slight identifications 
and/or modifications. First of all, it is necessary to fix y > 1, since the 
number of spatial dimensions is positive definite. Now, by taking y = 1 + 
l /N, one obtains from equation (7) that 

19 '.= ~ITN+ 1 (26) 

which describes the Stefan-Boltzmann law for N spatial dimensions. Of 
course, in order to deduce such an equation using general relativity, one 
must consider the EFE in N + 1 dimensions. Finally, we remark that the 
existence of the generalized Stefan-Boltzmann taw points to the possibility 
of an enlargement of the standard Wien law in order to encompass the 
class of y-fluids, now regarded as generalized radiation. In this regard, we 
notice that an attempt was recently made to fix a Wien-type law to the 
vacuum state (Lima and Maia, n.d.). It is easy to see that the spectrum 
proposed, namely pr(v) = v-  if(T/v), where f is an arbitrary function of its 
arguments, is compatible with our equation (7). Further, since in the case 
of photons p scales with v 3, it should be expected that for arbitrary values 
of 7, pr(v) scales with vl/(7-1)f(T/v). This problem will be discussed in 
detail elsewhere. 
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